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His research focuses on the intersection of
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Accelerating Deep Learning Computing

• Both neural architecture and accelerator
architecture design are important to
enable specialization and acceleration
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Data Driven Approach is Desirable
• Given the huge design space, data-driven approach is 

desirable, where new architecture design evolves as new 
designs and rewards are collected

• Hardware-aware Neural Architecture Search (NAS) and auto 
compiler optimization (e.g., autoTVM)

• Only focus on off-the-shelf hardware
• Neglect the freedom in the hardware design space 



Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural 
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision



Design spaces are tightly entangled
• Correlation between design spaces is complicated, and varies 

from accelerator to accelerator
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Joint Search Accelerator and Neural Network
• Searching accelerator and neural architecture in one 

optimization loop offers highly matched solutions
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Architecture Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural 
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision

Architectural Sizing

Connectivity Parameters



Architecture Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural 
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision

Architectural Sizing

Connectivity Parameters

How to embed these design dimensions for searching?



Convolution Loop Nests
• Convolution loop nests can be divided into two parts: 

temporal mapping and spatial parallelism

Tensor Dimension Notation

Batch N

Output Channel K

Input Channel C

Input Row (Output Row) Y (Y’)

Input Column (Output Column) X (X’)

Kernel Row R

Kernel Column S

Loop Tiling

Loop Order

Hardware Parallelism

For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16; 
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’; 
x’ = _X’ * T_X’ + _x’; 
y = y’ + r - R; 
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x] 

* wgts[k,c,y,x];

Mapping

HW



From Computation Loops To Hardware
• Spatial parallelism determines the PE connectivity

• e.g., C (in channels) indicates reduction of partial sum registers
• e.g., K (out channels) indicates forward of input feature registers
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Hardware
Design

For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16; 
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’; 
x’ = _X’ * T_X’ + _x’; 
y = y’ + r - R; 
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x] 

* wgts[k,c,y,x];

Mapping

HW



Encoding Accelerator and Mappings

L2 Buffer Size

L1 Buffer Size

Number of PEs

Bandwidth

Architectural Sizing

#Array Dimension

Array Dim. Sizes
PE Connection

(Parallel Dim)

Connectivity Parameters

Hardware Description For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16; 
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’; 
x’ = _X’ * T_X’ + _x’; 
y = y’ + r - R; 
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x] 

* wgts[k,c,y,x];
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Neural Accelerator Architecture Search
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Neural Accelerator Architecture Search

Accelerator
PopulationSample

Hardware
Evaluation

Environment

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

Accelerator Architecture Search
1. Random sample accelerator 

candidates based on 
multivariate normal 
distribution 𝑁𝑁(𝜇𝜇𝐴𝐴, 𝜎𝜎𝐴𝐴, Σ𝐴𝐴)



Neural Accelerator Architecture Search
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Compiler Mapping Search
1. Determine mapping space 

for each accelerator 
candidates from NN 
benchmarks



Neural Accelerator Architecture Search
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Compiler Mapping Search
2. Random sample mapping 

candidates based on 
multivariate normal 
distribution 𝑁𝑁(𝜇𝜇𝑀𝑀, 𝜎𝜎𝑀𝑀, Σ𝑀𝑀)



Neural Accelerator Architecture Search
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Compiler Mapping Search
3. Decode encoding vectors to 

hardware description;
4. Evaluate Energy-Delay-

Product (EDP) for each pair 
of accelerator candidate 
and its mapping candidate



Neural Accelerator Architecture Search
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Neural Accelerator Architecture Search
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5. Update 𝜇𝜇𝑀𝑀, 𝜎𝜎𝑀𝑀, Σ𝑀𝑀 to 

increase the likelihood 
around best fits



Neural Accelerator Architecture Search
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(iteratively optimizing mappings)



Neural Accelerator Architecture Search
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Accelerator Architecture Search
2. Select best fits based EDP 

using corresponding 
searched mappings



Neural Accelerator Architecture Search
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3. Update 𝜇𝜇𝐴𝐴, 𝜎𝜎𝐴𝐴, Σ𝐴𝐴 to 

increase the likelihood 
around best fits



Neural Accelerator Architecture Search
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• Index-based Encoding
• Increment/Decrement of index value does not convey any physical 

information

Encoding Non-numerical Parameters

Non-Numerical Non-NumericalNon-Numerical

Non-Numerical Parameter
Loop Orders

Numerical Encoding Value
Index

CRXKYS 0

CXYRSK 1

… …

Hardware Encoding Vector
L2 L1 #PE BW #Dim Dim Sizes Parallel Dims

Mapping Encoding Vector
Loop OrdersLoop Orders Tiling Sizes



Encoding Non-numerical Parameters
Hardware Encoding Vector

L2 L1 #PE BW #Dim Dim Sizes Parallel Dims
Mapping Encoding Vector

Loop OrdersLoop Orders Tiling Sizes

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

Dimension
Importance

• Importance-based Encoding
1. Fix the dimension position in the encoding vectors
2. Optimizer assigns numerical importance to these dimensions

• by random sampling based on multivariate normal distribution, the same as 
other numerical parameters such as array sizes



Encoding Non-numerical Parameters
Hardware Encoding Vector

L2 L1 #PE BW #Dim Dim Sizes Parallel Dims
Mapping Encoding Vector

Loop OrdersLoop Orders Tiling Sizes

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

Dimension
Importance

C K R X’ Y’ S
6 4 3 2 2 1

Sort
C R X’ K Y’ S
5 5 4 3 2 1

Sort

• Importance-based Encoding
3. Sort the dimensions by the importance value in decreasing order



Encoding Non-numerical Parameters

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

C K R X’ Y’ S
6 4 3 2 2 1

Parallel-For c in range(16):
For r in range(3):
For x’ in range(7):
Parallel-For k in range(16):
For y’ in range(7):
For s in range(3):

Sort

Other Connectivity Parameters
#Dim Size[0] Size[1] Size[2]

2 16 16 -

Tiling Sizes
K C Y’ X’ R S
- - 7 7 3 3

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

C R X’ K Y’ S
5 5 4 3 2 1

Sort

Decode

choose first
2 dimensions Outermost Innermost

Outermost

Innermost

C
R
X
K
Y
S

Hardware Encoding Vector
L2 L1 #PE BW #Dim Dim Sizes Parallel Dims

Dimension
Importance

Mapping Encoding Vector
Loop OrdersLoop Orders Tiling Sizes



Evaluation
• Design Spaces of NAAS

• 4 resource constraints: EdgeTPU, NVDLA, Eyeriss, ShiDianNao
• NAAS searches #PEs at stride of 8, buffer sizes at stride of 16B, array 

sizes at stride of 2

• CNN Benchmarks
• Classic large-scale networks: VGG16, ResNet50, UNet
• Light-weight mobile networks: MobileNetV2, SqueezeNet, MNasNet

• Evaluation Settings
• Large-scale NN with more hardware resources (EdgeTPU, NVDLA 

with 1024 PEs)
• Light-weight NN with limited hardware resources (ShiDianNao, 

Eyeriss, NVDLA with 256 PEs)



Learning Curves

• As the optimization continues, the EDP mean of NAAS 
candidates decreases.

• NAAS gradually improves the range of hardware selections.



Search Beyond Architecture Sizing

• Compared to searching the architectural sizing only (e.g., 
NASAIC, NHAS), searching the connectivity parameters and 
mapping strategies as well achieves considerable EDP 
reduction.



NAAS offers better solution than baseline



Jointly Optimize NN, Mapping, Accelerator

For epoch_naas in range(max_naas_epochs):

accelerators = NAAS_generate_hardware()

For hw in accelerators:

For epoch_ofa in range(max_ofa_epochs):

networks = OFA_generate_networks(accuracy)

For nn in networks:

map = NAAS_optimize_mappings(hw, nn)

edp = NAAS_get_edp(hw, nn, map)

OFA_update_optimizer(nn, edp)

best_nn, best_map, best_edp = OFA_update_best(nn, map, edp)

NAAS_update_optimizer(hw, best_nn, best_map, best_edp)



Evaluation
• Design Space of NAS

• Once-For-All ResNet NAS
• 3 width multiplier choices: 0.65, 0.8, 1.0
• 18 residual blocks at maximum
• 3 reduction ratios in each residual block: 0.2, 0.25, 0.35
• Input image size ranges from 128 to 256 at strid of 16



Top-1 Accuracy vs. Normalized EDP
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Compared to NASAIC

Search 
Approach Arch Cifar-10

Accuracy
Latency
(cycles)

Energy
(nJ)

EDP
(cycles-nJ)

NASAIC
NVDLA 93.2

3e5 1e9 3e14
ShiDianNao 91.1

NAAS NVDLA 93.2 8e4 2e9 2e14

Search
Approach

Co-Search 
Cost (Gds)

NN Training 
Cost (Gds)

Total Cost
(Gds) AWS Cost CO2 

Emission

NASAIC 6000N 16 N 6000N $ 441, 000N 41, 000N lbs

NHAS 12+4N 16 N 12+20N $ 1, 500N 150N lbs

NAAS <0.25N 50 < 50 + 0.25N < $ 18N < 2N lbs

• Gds: GPU days. N: the number of deployment scenarios.
• AWS cost $75/Gd, CO2 emission is 7.5 lbs/Gd.



Neural Accelerator Architecture Search
• Design spaces of hardware, compiler, and neural networks are

tightly entangled, joint-optimization is better than separate
optimization.

• Optimize both numerical parameters and non-numerical
parameters, such as PE connectivity and loop order.
Importance-based encoding helps optimize non-numerical
parameters.

Non expert Neural Accelerator 
Architecture Search

+
Neural Networks

AI Hardware

Machine learning expert
Hardware expert

https://tinyml.mit.edu

https://tinyml.mit.edu/
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